on residuated lattices with universal quantifiers

Authors

m. kondo

school of information environment‎, ‎tokyo denki university‎, ‎p.o‎. ‎box 270-1382‎, ‎inzai‎, ‎japan

abstract

we consider properties of residuated lattices with universal quantifier and show that, for a residuated lattice $x$, $(x, forall)$ is a residuated lattice with a quantifier if and only if there is an $m$-relatively complete substructure of $x$. we also show that, for a strong residuated lattice $x$, $bigcap {p_{lambda} ,|,p_{lambda} {rm is an} m{rm -filter} } = {1}$ and hence that any strong residuated lattice is a subdirect product of a strong residuated lattice with a universal quantifier ${ x/p_{lambda} }$, where $p_{lambda}$ is a prime $m$-filter. as a corollary of this result, we prove that every strong monadic mtl-algebra (bl- and mv-algebra) is a subdirect product of linearly ordered strong monadic mtl-algebras (bl- and mv-algebras, respectively).

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On residuated lattices with universal quantifiers

We consider properties of residuated lattices with universal quantifier and show that, for a residuated lattice $X$, $(X, forall)$ is a residuated lattice with a quantifier if and only if there is an $m$-relatively complete substructure of $X$. We also show that, for a strong residuated lattice $X$, $bigcap {P_{lambda} ,|,P_{lambda} {rm is an} m{rm -filter} } = {1}$ and hence that any strong re...

full text

Topological Residuated ‎Lattices

In this paper, we study the separtion axioms $T_0,T_1,T_2$ and $T_{5/2}$ on topological and semitopological residuated lattices and we show that they are equivalent on topological residuated lattices. Then we prove that for every infinite cardinal number $alpha$, there exists at least one nontrivial Hausdorff topological residuated lattice of cardinality $alpha$. In the follows, we obtain some ...

full text

DIRECTLY INDECOMPOSABLE RESIDUATED LATTICES

The aim of this paper is to extend results established by H. Onoand T. Kowalski regarding directly indecomposable commutative residuatedlattices to the non-commutative case. The main theorem states that a residuatedlattice A is directly indecomposable if and only if its Boolean center B(A)is {0, 1}. We also prove that any linearly ordered residuated lattice and anylocal residuated lattice are d...

full text

Regularity in residuated lattices

In this paper, we study residuated lattices in order to give new characterizations for dense, regular and Boolean elements in residuated lattices and investigate special residuated lattices in order to obtain new characterizations for the directly indecomposable subvariety of Stonean residuated lattices. Free algebra in varieties of Stonean residuated lattices is constructed. We introduce in re...

full text

Residuated Lattices

The theory of residuated lattices, first proposed by Ward and Dilworth [4], is formalised in Isabelle/HOL. This includes concepts of residuated functions; their adjoints and conjugates. It also contains necessary and sufficient conditions for the existence of these operations in an arbitrary lattice. The mathematical components for residuated lattices are linked to the AFP entry for relation al...

full text

My Resources

Save resource for easier access later


Journal title:
bulletin of the iranian mathematical society

جلد ۴۱، شماره ۴، صفحات ۹۲۳-۹۲۹

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023